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ABSTRACT
Background. Untreated wastewater carries substantial amount of heavy metals and
causes potential ecological risks to the environment, food quality, soil health and
sustainable agriculture.
Methodology. In order to reduce the incidence of nickel (Ni2+) contamination in soils,
two separate experiments (incubation and greenhouse) were conducted to investigate
the potentials of rice straw biochar and elemental sulfur in remediating Ni2+ polluted
soil due to the irrigation with wastewater. Five incubation periods (1, 7, 14, 28 and 56
days), three biochar doses (0, 10 and 20 g kg−1 of soil) and two doses of sulfur (0 and
5 g kg−1 of soil) were used in the incubation experiment then the Ni2+ was extracted
from the soil and analyzed, while ryegrass seeds Lolium perenne L. (Poales: Poaceae)
and the same doses of biochar and sulfur were used in the greenhouse experiment then
the plants Ni2+-uptake was determined.
Results. The results of the incubation experiment revealed a dose-dependent reduction
of DTPA-extractable Ni2+ in soils treated with biochar. Increasing the biochar dose
from 0 g kg−1 (control) to 10 or 20 g kg−1 (treatments) decreased the DTPA-extractable
Ni2+ from the soil by 24.6% and 39.4%, respectively. The application of sulfur increased
theNi2+-uptake by ryegrass plant whichwas used as hyper-accumulator of heavymetals
in the green house experiment. However, the biochar decreased the Ni2+-uptake by the
plant therefore it can be used as animal feed.
Conclusions. These results indicate that the biochar and sulfur could be applied
separately to remediate the Ni2+-contaminated soils either through adsorbing the Ni2+

by biochar or increasing the Ni2+ availability by sulfur to be easily uptaken by the
hyper-accumulator plant, and hence promote a sustainable agriculture.
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INTRODUCTION
Due to the rapid increase in industrial and urban areas, environmental pollution is
increasing worldwide, which is causing unwanted changes in air, water, and soil at
biological, physical, as well as chemical levels that ultimately causing negative effects in
living things (Nagajyoti, Lee & Sreekanth, 2010; Rehman et al., 2019; Saleem et al., 2020b).
In order to feed a growing world population, implemented practices that prevent further
contamination and remediate contaminated soils are needed. The agricultural practices
in developing countries (arid and semi-arid zones) rely on the irrigation system that
complements the scarcity of water and sustain the food production year round (McCartney
et al., 2009). At least 20 million hectares of soils in Africa, South America, Middle East, East
Asia and Southern Europe are irrigated with untreated sewage water (Bigdeli & Seilsepour,
2008; Qadir et al., 2010).

The discharge of wastewater from industrial and commercial effluents for irrigation
purposes led to the accumulation of heavy metals (HM) in the soil and represents a threat
for agriculture and food security (Muchuweti et al., 2006; Pedrero et al., 2010; Rageh, 2014).
While it is shown that wastewater improves the soil physical properties and increases the
soil organic matter content and essential nutrients (Kharche, Desai & Pharande, 2011), it
also increases the risk of soil contamination with heavymetals such as lead (Pb), nickel (Ni),
cobalt (Co), cadmium (Cd), arsenic (As), mercury (Hg), chromium (Cr) and selenium (Se)
(Balkhair & Ashraf, 2016; Mapanda et al., 2005; Rattan et al., 2005; Ullah, Khan & Ullah,
2012), microbes and pathogens (Amoah et al., 2011).

Nickel (Ni2+) is one of the common heavy metals used on a large scale in producing
metal alloys, stainless steel, ceramic, glass, electronic products and batteries (Rathor,
Chopra & Adhikari, 2014). This heavy metal is released in the environment through
mining, vehicles exhausts, industrial wastes and applications of fertilizers (Hashim et al.,
2017; Kabata-Pendias & Mukherjee, 2007). In order to decontaminate the polluted soils
by this heavy metal, chemicals such as acids, chelators, and immobilizers are used which
are called in situ Chemo-remediation agents (Abdel-Salam et al., 2015). Many agricultural
lands and aquatic ecosystem in Egypt are destroyed or unusable due to the contamination
with heavy metals (Al Naggar, Khalil & Ghorab, 2018; Issa, Yasin & Loutfy, 2018). In some
areas, crop and fish productions have been reduced by the contaminants.

Soil is the main support of agriculture and plays crucial roles in food safety and
security (Tóth et al., 2016). Heavy metal accumulation in soils is of concern in agricultural
production due to its adverse effects on food safety and marketability, crop growth, and
environmental health of soil organisms (Saleem et al., 2020a). Heavy metals accumulate
in soil and crops, and when consumed expose consumers and animals to health hazard
(Hashmi et al., 2013). For example, about 20% of the agricultural lands in China are
subjected to contamination particularly with heavy metals (Xi et al., 2011), of which
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Ni2+, Cd2+ and As3+ represent one-fifth of the soil pollution (Wan, Yang & Song, 2018).
According to the Chinese Soil Environmental Quality Standards (CSEQS), the level of
Ni2+ exceeds the tolerance threshold by 4.8% (accentuated by the irrigation with waste
water), making it (Ni2+) a significant threat to agriculture and land use (Chen et al., 1999;
Wuana & Okieimen, 2011). An estimated 6.24% or 137,000 km2 of European agricultural
lands are destroyed by heavy metals and need urgent remediation (Tóth et al., 2016). A
number of previous studies have shown that the Ni 2+ contamination of Egyptian soils
due to anthropogenic and natural sources endangers the agroecosystem (El-Gammal, Ali
& Samra, 2014; Hashim et al., 2017; Nour et al., 2019).

The alleviation of organic and inorganic pollutants level from the soils is a major concern
toward protecting the environment and ensuring a sustainable agriculture. Over the past
decades, biochar has been developed and promoted as a potential mean to reduce the
incidence of manmade pollutants discharged in the environment (Mahdi, El Hanandeh &
Yu, 2017b).

Biochar is a complex carbonaceous material produced from pyrolysis of waste biomass
and agricultural residues, widely used in water treatment and soil remediation (Liu et al.,
2011; Wang et al., 2010; Xu et al., 2013). It is used in agriculture to improve soils fertility,
enhance crops yield, and ensure environmental decontamination by sequestrating carbons
in the soil for approximately 100–1,000 years (Abiven et al., 2015). Biochar represents
a promising choice in chemo-remediation of polluted soil with heavy metals (Lahori et
al., 2017). It has unique properties to mitigate contaminants bioavailability due to its
tendency to adsorb, immobilize and stabilize heavy metals (Ippolito, Laird & Busscher,
2012; O’Connor et al., 2018).

Rice straw is among the highly available and accessible biomass produced in Egypt.
Unfortunately rice straw is burnt after harvesting, thereby causing environmental issues
such as air pollution and ecological disturbance (Bishay, 2010). Its availability and
accessibility coupled to the necessity of reducing the environmental impacts of its poor
management prompted us to use it for producing the studied biochar.

Phytoextraction is a promising, safe and cheap technique for the decontamination of
soils polluted by heavy metals which depends upon using plants (hyperaccumulators) to
uptake the pollutants from the soil (Ghori et al., 2016). Heavy metals availability in the soil
is the main factor which controls the using of this technique successfully. Lowering the
soil pH by natural elements such as sulfur (S) is one of the effective ways to increase the
availability of heavy metals in soils (Dede & Ozdemir, 2016). Some studies showed that the
sulfur addition to mercury-polluted soil reduced the mercury (Hg) uptaken by the plants
however, some other studies reported an increasing in the heavy metals solubility due to
lowering the pH, therefore the sulfur effect on heavy metals availability in the soil is fuzzy
and needs additional studies (Li et al., 2019).

Many recent studies reported that the biochar is effective at reducing heavy metals
uptake by plants (Chen et al., 2018; Jatav et al., 2016; Tian, Liu & Xiang, 2017); however,
the effect of biochar to remediate Ni2+-contaminated soils is fragmentary. Therefore,
the main objectives of the present study were: (a) to determine the capacity of the rice
straw-biochar in reducing the available Ni2+ content in the soil; (b) to illustrate the effect
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of sulfur in enhancing the Ni-uptake by the hyperaccumulator plant, and finally; (c) to
measure the phytoextraction potential of ryegrass—an herbaceous species commonly used
as feed for animals and hyperaccumulator of heavy metals—in Ni2+-contaminated soils.

MATERIAL AND METHODS
The study was conducted on nickel-contaminated soil collected from El-Gabal El-Asfar,
Qalyubia Governorate, Egypt (Latitude 30◦11′38.22′′N and Longitude 31◦21′56.556′′E).
The soil at this site is contaminated by Ni2+ due to irrigation with wastewater for 40 years.
The Ni2+-content of the harvested plants from this site contained about 20 folds higher
than the maximum critical value of the food safety standard (Gad & Zaghloul, 2007).
Two experimental settings were carried out: an incubation experiment and a greenhouse
experiment.

Preparation of experimental materials
Soil sampling and analysis
Five hundred kilograms of contaminated soil was surface-sampled at 0–30 cm depth, air
dried, crushed and sieved through a two mm sieve. The soil samples were collected from
an open field (with no fence) after taking a verbally permission from Diaa-Eldin Elziaty
(the owner of the field). The collected samples were mixed for determining its physical and
chemical properties before trials using the methods previously reported (Gupta, 2000).

Particle size distribution and calcium carbonate (CaCO3) were determined following
(Piper, 1950); Electrical conductivity (EC) in saturated soil paste extract was determined
following Jackson, Miller & Forkiln (1973) and soil pH was determined in 1:2.5 soil: water
suspension (ratio) by using an electronic pH meter (Beckman 350 pH meter, Model N/A,
USA) (Jackson, Miller & Forkiln, 1973). Organic matter (OM) content was determined
using the Walkley and Black method as described by Jackson, Miller & Forkiln (1973). To
determine the total Ni2+, the soil samples were digested using tri mixture of perchloric
(HClO4), nitric (HNO3) and sulfuric (H2SO4) acids (Hseu et al., 2002). The available Ni2+

(DTPA-extractable Ni+2) was extracted using diethylene triamine pentaacidic acid (DTPA)
method (Norvell, 1984). The atomic absorption spectrophotometer 210VGP was used to
determine nickel from each treatment. The chemical and physical properties of the studied
soil are showed in Table 1. After the physical and chemical analyses, 4 kg of the analyzed
soil were introduced in each experimental plastic pot (22.5-cm diameter top, 16.5-cm
diameter base and 18-cm depth); these pots were used in the incubation and greenhouse
experiments. The pots were padded with plastic bags to prevent water flow out of the pots.
Both of the experiments started on October 15th 2018, the incubation experiment lasted
for 56 days and ended on December 10th 2018, while the greenhouse experiment lasted for
90 days and ended on January 13th 2019.

Production of biochar
The biochar was produced from the pyrolysis of rice straw (obtained from the rice
producing farmers) in an electrical muffle furnace (Lenton Furnace, UK) under limited
oxygen at pyrolysis temperature of 350 ◦C for 2 h to get high yield of low-pH biochar
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Table 1 Chemical and physical properties of the studied soil. Each value bar represents means± stan-
dard errors of three replicates.

Soil property Value

Particle size distribution1

% Sand 82.23± 0.04
% Silt 9.58± 0.04
% Clay 8.19± 0.05
Texture class2 Sand
CEC (cmolc kg−1) 10.42± 0.04
EC (dS m−1) 4.1± 0.0
pH3 6.85± 0.02
OM (g kg−1) 11.7± 0.04
CaCO3(g kg−1) 15.22± 0.03
Total content of Ni (mg kg−1) 57.4± 0.02
DTPA-extractable Ni (mg kg−1) 8.67± 0.03

Notes.
1Using pipette method.
2Texture class is according to international soil texture triangle.
3Ratio 1:2.5 (soil/water).

Table 2 Properties of the rice straw biochar. Each value bar represents means± standard errors of three
replicates.

Property Value

pHa 7.08± 0.02
EC (dS m−1) 1.28± 0.02
CEC (cmolc kg−1)b 64.2± 0.03
Available Ni mg kg−1c nd

Notes.
aDetermined in 1:2 (w/v) suspension.
bSumner & Miller (1996).
cMeasured in the ash.
nd, not detected.

(Mahdi, El Hanandeh & Yu, 2017b). Then, the resulting product was crushed and milled
through 0.25 mm sieve (Khan, Salma & Hossain, 2018) before being applied to the soil. All
experiments were carried out in triplicates. The chemical and physical properties of the
biochar are presented in Table 2.

Experimental designs
Incubation experiment
Factorial randomized complete block design (RCBD) was used for this experiment. Five
incubation periods (time elapsed between the adding of biochar to soils and the analysis of
nickel content) (1, 7, 14, 28 and 56 days) were considered and three biochar doses (amounts
applied) (0, 10 and 20 g kg−1 of soil) were used under fluctuating greenhouse conditions
(temperature of 15 ± 5 ◦C, and relative humidity of 50 ± 8%). The untreated groups
(0 g kg−1) represent the control. In order to increase the availability of Ni2+ in the soil,
we used two doses of elemental sulfur (amounts applied) (0 and 5 g kg−1 of soil), which
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was commonly used in lowering the pH of the soil and increasing heavy metal availability
(Komkiene & Baltrenaite, 2016). Overall, the experiment involved 30 treatments, each
consisting of three replicates. A total of 90 pots were used, each containing 4 kg of the soil
treated with different doses of biochar (0, 10 and 20 g kg−1) and sulfur (0 and 5 g kg−1).
Tap water (0 Ni2+ mg L−1) was supplied continually to keep the moisture content of the
soil at the water holding capacity by weight of each pot. At the end of each incubation
period, the Ni2+ was extracted and analyzed using Diethylene Triamine Pentaacetic Acid
(DTPA) method as previously described (Lindsay & Norvell, 1978).

Greenhouse experiment
A factorial randomized complete block design (RCBD) was used. Similar to the incubation
experiment, three doses of the biochar and two doses of the sulfur were used. The pots were
uniformly packed with 4 kg of the soil, treated with different doses of biochar and sulfur
(see incubation experimental procedures above). Thirty seeds of ryegrass were sown in each
pot and were allowed to germinate and grow under the greenhouse conditions (15± 5 ◦C,
50± 8% relative humidity). Pots were watered using tap water (0 Ni2+mg L−1) as required
to keep the moisture content at water holding capacity. After germination, the emerged
seedlings were thinned to 20 plants per pot based on their size, shape and color of the
leaves. The grown plants were supplied with the essential nutrients Nitrogen, Phosphorus,
Potassium (N-P-K) 300: 100: 200 (mgL−1) respectively, through foliar application once per
week. The grass was harvested twice; the first mow was on the 45th day of the cultivation,
while the second one was on the 90th day. The harvested plants were oven-dried at 70 ◦C
for 72 h, then crushed, milled through a 1-mm stainless steel mill and digested according
to a previously described method (Grimshaw, 1987). The Ni2+ content of the plants was
determined using atomic absorption spectrophotometer 210VGP (Buck Scientific, USA).

Statistical analyses
All data on nickel immobilization and uptake were tested for homogeneity of variances
using Levene’s tests. The important factors (treatments, incubation periods and mow time)
that influenced the Ni2+ adsorption and uptake were evaluated by the regression analysis
(SPSS) with treatments, incubation periods and mow time as factors. The one-way analysis
of variance (ANOVA) was used to analyze differences in Ni2+ adsorption and uptake
across treatments and experimental periods using SPSS 20.0 software (Statsoft Inc, Carey,
J, USA). Tukey Post-hoc (HSD) test was used for mean separations within and between
different treatments and experimental times. Differences between the Ni2+ immobilization
capacities of the biochar and uptake levels were expressed as the means with standard
errors (SE) and were considered significant when the P values were less than 0.05 after
comparison with Tukey Post-hoc (HSD) test. OriginPro software version 8.5.1 was used to
draw figures.

RESULTS
Immobilization of nickel by biochar
Effect of biochar and sulfur doses on the DTPA-extractable nickel contents of the
contaminated soil is shown in Fig. 1. Figure 1 indicates that the biochar treatments
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Figure 1 Effect of biochar and sulfur doses on the DTPA-extractable nickel contents of the contami-
nated soil. Each vertical bar represents means± standard errors of three replicates, and means followed by
lowercase letters within and between treatments are statistically different after Tukey HSD test at P = 0.05.

Full-size DOI: 10.7717/peerj.9267/fig-1

(alone and in combination with sulfur) and the experimental period significantly affected
the extractable Ni2+ content of the soil following a dose-dependent pattern in comparison
with the control groups (untreated) (Regression Model, F = 8.926; df = 5, 12; R2

= 0.788;
P = 0.001, and F = 143.913; df = 6, 8; R2

= 0.991; P < 0.001, respectively, Fig. 1). The
extractable Ni2+ content of the soil reflected the extent of Ni2+ immobilization by biochar.
The lower the extractable Ni2+ content of the soil, the heavier is the immobilization
of Ni2+ by biochar. When treated alone, the sulfur did not produce any effect on the
Ni2+ immobilization compared with the control groups (ANOVA, F = 8.926; df = 1, 4;
P = 0.079, Fig. 1). When treated by sulfur combined with the biochar, the extractable Ni2+

content was not significantly different from those of single biochar treatments (ANOVA,
F = 8.926; df = 1, 4; P = 0.912 and F = 8.926; df = 1, 4; P = 0.999, respectively, Fig. 1).
The Ni2+ immobilization level increased based on the doses of biochar used. The least
content of extractable Ni2+ among all the treatments was recorded when the soil was
treated with 20 g kg−1 of single biochar treatment (ANOVA, F = 1612.095; df = 1, 4;
P < 0.001, respectively) (Fig. 1).

Effects of biochar on nickel uptake by plants
Effect of biochar and sulfur doses on nickel uptake by ryegrass plants is shown in Fig. 2.
Figure 2 shows that the Ni2+ uptake by the ryegrass was significantly influenced by the
experimental treatments and mow periods (Regression Model, F = 11.078; df = 2, 15;
R2
= 0.596; t = 3.058; P = 0.001, and F = 11.078; df = 2, 15; R2

= 0.772; t = 3.058;
P = 0.008, respectively). The single application of sulfur enhanced the Ni2+ uptake
compared to the control (ANOVA, F = 9360.151; df = 5, 12; P < 0.001) (Fig. 2). The
Ni2+ uptake was significantly higher in the first mow in comparison with the second
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Figure 2 Effect of biochar and sulfur doses on nickel uptake by ryegrass plants. Each vertical bar repre-
sents means± standard errors of three replicates, and means followed by lowercase letters within and be-
tween treatments are statistically different after Tukey HSD test at P = 0.05.

Full-size DOI: 10.7717/peerj.9267/fig-2

one (ANOVA, F = 9360.151; df = 5, 12; P < 0.001) which was consistent across the
treatments (there were no treatment effects on the Ni2+ uptake in the second mow)
(ANOVA, F = 44.252; df = 5, 12; P = 0.058) (Fig. 2). Both doses of biochar mitigated
the Ni2+ uptake by the plant compared with the control (ANOVA, F = 9360.151; df = 5,
12; P < 0.001) (Fig. 2). The blend of biochar with 5 g kg−1 of sulfur increased the uptake
of Ni2+ by the plant (in the first mow), compared to their single applications (ANOVA,
F = 9360.151; df = 5, 12; P < 0.001).

DISCUSSION
In the present study, we used rice straw to produce the biochar and then evaluated its
efficiency in the mitigation of Ni2+ contamination from Ni2+ contaminated soil and how
it triggered the Ni2+ uptake by ryegrass plant (Lolium perenne L.). Overall, the biochar used
in our experiment exhibited a good alleviation performance of soil Ni2+ contamination
and mitigation of Ni2+ uptake by the plants.

Mitigation of Nit2+ contamination in the soil by biochar
The results obtained from this experiment show that the DTPA-extractable Ni2+ content of
the soil decreased with the increase of the biochar doses applied, reveal that increasing the
dose of biochar resulted in enhancing the Ni2+ adsorption by the biochar (Fig. 1). These
results join previous reports (Ali et al., 2020b;Mahdi, Qiming & Hanandeh, 2018; Pedrero et
al., 2010;Rageh, 2014) in establishing the capacity of biochar to alleviate the content of heavy
metals from contaminated soils. For examples, rice straw biochar has proven its efficiency
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in alleviating Ni2+ toxicity and remediating Ni2+-contaminated soils by decreasing the
Ni2+ mobility and leachability in the soil (Ali et al., 2020a; Ali et al., 2020b), also date seed
derived biochar has shown significant capacity to adsorb copper (Cu2+) and Ni2+ ions
from aqueous solution, and the ions removal depended on the pyrolysis temperature and
time used in biochar preparation and the biochar dose (Mahdi, El Hanandeh & Yu, 2017a;
Mahdi, El Hanandeh & Yu, 2017b), moreover the biochar produced from wood waste
revealed significant potential of Cu2+ adsorption from the soil as well the Cu2+ adsorption
quantity increased with the increase of the biochar doses and pH value (Tomczyk, Boguta &
Sokołowska, 2019). In other studies, it was previously reported that the adsorption capacity
of biochar is related to its pH and cation exchange capacity (CEC) values. The high CEC
value, the large surface area and the alkaline pH of biochar could explain its potentials to
adsorb and immobilize pollutants from soils (Ali et al., 2020a; Beesley et al., 2011; Jeffery et
al., 2011; Kookana, 2010; Yuan & Xu, 2011), owing to the fact that the alkali pH results in
the functional groups dissociation of biochar, these functional groups such as phenolic and
carboxylic groups produce negative charge thereby easily immobilize the soil cations which
have positive charge (Tomczyk, Boguta & Sokołowska, 2019). Additionally, the biochar
efficacy in heavy metal adsorption, stabilization and precipitation was attributed to its large
surface area and complexation between the functional groups and the metals (Ali et al.,
2020a; Lu et al., 2012). Furthermore, it has been suggested that heavy metals such as Ni2+

and Cd2+ were immobilized by the biochar due to its porous structure and the existence
of several functional groups and negative charges on its surface (Ali et al., 2020b; Kamran
et al., 2019).

The role of the sulfur is to lower the soil pH with the effect of increasing the availability
of Ni2+ in soils (Dede & Ozdemir, 2016). This will in turn, enhance the biochar adsorption
capacity or theNi2+ uptake by the hyper-accumulator plant. The availability andmotions of
heavy metals increase in low pH conditions of the soil (Çimrin, Turan & Kapur, 2007;Dede
& Ozdemir, 2016) also, the Ni2+ content released from river sediments decreases with the
increase of the water pH (Zhang et al., 2018). The results of the incubation experiment have
shown no statistic difference of Ni2+ adsorption between the control (untreated) groups
and the sulfur treatment groups under pH (6.85), irrespective of the incubation time.
However, the results of the greenhouse experiment revealed that the single application of
sulfur significantly increased the Ni2+ uptake by ryegrass plant. This finding indicates that
the sulfur might not have been able to significantly decrease the soil pH in view of releasing
more nickel ions to be adsorbed by the biochar in the incubation experiment (as occurred
in the greenhouse experiment). This may be due to differences in the incubation and
cultivation conditions in the laboratory and greenhouse, respectively. Moreover, using the
elemental sulfur to lower the soil pH is a slow biological process, instead of a fast chemical
reaction. This biological process relies on (a) the potential of soil microorganisms such
as sulfur-oxidizing bacteria and fungi (which are abundantly available in the rhizosphere
area) to oxidize the elemental sulfur (S) to sulfate (SO4

2−), which quickly turns into
sulfuric acid (H2SO4) to reduce the soil pH (Gao & Draper, 2010; Grayston & Germida,
1991); (b) the soil temperature and humidity. The sulfur-oxidizing bacteria need warm
and moist soil to be active and play its oxidizing role (Gao & Draper, 2010). In fact, soils
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have the ability to absorb the heat in sunny days and store the thermal energy due to its
large heat storage capacity (Alnefaie & Abu-Hamdeh, 2013; Rempel & Rempel, 2013);, and
finally, (c) the roots exudates. It was shown that the roots secretions in the rhizosphere
area improve the biological processes and the microbial community (Kuzyakov, Hill &
Jones, 2007), thereby enhancing the sulfur oxidation process and lowering the soil pH. The
sulfur inability to lower the soil pH in the incubation experiment can also be attributed
to the sulfur dose used (5 g kg−1), which might not have been enough to lower the soil
pH within the incubation time. A higher sulfur dose of 9.6 g kg−1 previously applied was
reported to be able to decrease the pH of the soil and increase the solubility of heavy
metals (Pb2+ and Cd2+) (Çimrin, Turan & Kapur, 2007). Another possible mechanism
linked to the application of sulfur could be the increase of the transpiration rate, which in
turn, might have increased Ni2+ translocation to shoot through water movement. In our
study, we did not measure transpiration rate of ryegrass, but it’s believed that it is affected
by the application of sulfur (Habiba et al., 2015; Kanwal et al., 2014; Zaheer et al., 2015).
Therefore, the evaluation of the transpiration rate of ryegrass represents a tangible venue
of our future research.

Furthermore, the addition of sulfur to the biochar did not significantly affect the content
of extractable Ni2+ as no significant difference of its content was recorded compared to
single application of biochar (Fig. 1). Presumably, the absorption or immobilization
efficiency of Ni2+ by biochar was significantly triggered, rather than that in the presence
of sulfur in the combined treatment.

Reduction of the Ni2+ uptake of ryegrass by biochar
Perennial ryegrass (Lolium perenne L.) is an herbaceous plant species commonly used as
feed for animals and as hyper-accumulator of heavy metals from soils (Zou, 2015). In the
greenhouse experiment, the Ni2+ uptake capacity by ryegrass was evaluated under the
influence of biochar and sulfur. Overall, the results show that the ryegrass uptake of Ni2+

was lower at the first mow in biochar treatments and the uptake capacity was inversely
proportional to the doses of biochar used in comparison with the control (Fig. 2). The
reduction of the Ni2+ uptake by the plant after the first mow suggests that the biochar
could have adsorbed most of the available Ni2+ ions in the soil thereby reducing its amount
to be up-taken by the plant. This result is supported by some previous reports whereby,
the addition of biochar to HM-contaminated soils decreased the availability of Ni2+,
Pb2+, Cd2+ and Cu2+, ensured optimal uptake by maize plant and prevented a potential
phyto-toxicity (Alaboudi, Ahmed & Brodie, 2019; Kamran et al., 2019; Rehman et al., 2019;
Rehman et al., 2016).

The highest Ni2+ uptake was recorded when the soil was treated with sulfur alone (5 g
kg−1 of soil) with 17.58% of Ni2+ up-take increase compared to the control. As explained
in the previous section, the decrease of the pH by the application of sulfur resulted in
the increase of the availability of Ni2+ ions, which thereafter, augmented the Ni2+ uptake
efficiency of the plant compared to the control (Fig. 2). In previous studies, the application
of sulfur significantly increased the removal or uptake of Cu2+, Pb2+ and Cd2+ ions
by the plants in consequence of increasing the ions solubility due to the pH reduction
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(Çimrin, Turan & Kapur, 2007; Dede & Ozdemir, 2016). Therefore, the sulfur can be used
in phytoremediation to raise the plant potentials in heavy metals extraction and uptake.

The Ni2+ uptake was lower in the second mow compared to the first one and remained
consistent across treatments. This observation indicates that the Ni2+ uptake process could
have been carried out at the early stage of the development of the ryegrass (within 45 days).
It seems like as the plant grows older, its Ni2+ uptake capacity crashed and remained below
the uptake threshold (less than 0.1 g kg−1) (Fig. 2), in addition to the reduction of the
soil available Ni2+ content caused by biochar application. Our finding is consistent with a
study on decontamination of Ni2+-contaminated soils collected from different locations
of China, in which Alyssum corsicum and Alyssum murale plant species showed a very
low Ni2+ uptake in Yuanjiang soil (Qiu, Liu & Wan, 2008). The fact that the Ni2+ ions
were significantly up-taken during the first mow (on the 45th day of the cultivation) and
dropped consistently in the second mow (on the 90th day of the cultivation) suggests that
the biochar could reduce the level of available Ni2+ in the soil and prevent its uptake by
the plant; and the ryegrass could be used as a hyper-accumulator of heavy metals to clean
the soil (preferentially at the early stage of its development) and as animal feed (at the late
stage of its development). This dual benefit could help the farmers to increase their crops
(by decontaminating the soil from pollutants) and to empower the livestock industries by
availing safe feed with very low contamination rate.

CONCLUSIONS
Biochar is considered as a promising adsorbent in chemo-remediation, it’s cost-effective
and eco-friendly. In this study, we performed two experimental settings (incubation and
greenhouse experiments) to investigate the mitigation effect of Ni2+ contaminated soil
by application of rice straw biochar and how it triggers the Ni2+ uptake by ryegrass. The
results show that the mitigation effect of Ni2+ contamination by biochar is dose-dependent
therefore it can be used to reduce the level of Ni2+ in the soil and its uptake by the plants.
The single application of sulfur increased the Ni2+ uptake by ryegrass due to increasing
the Ni2+ availability by lowering the soil pH, contrary to its combined application with
biochar, in which the Ni2+ uptake by the plant decreased, therefore, the sulfur can be used
in phytoremediation to raise the heavy metals uptake by the plants, and the ryegrass could
be used as a hyper-accumulator of heavy metals (at the early stage of its development) and
also as animal feed (at the late stage of its development), thereby promoting a sustainable
agriculture.
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